Leandro F. Prudente

Professor at Institute of Mathematics and Statistics of Federal University of Goias (UFG).
Undergraduate degree (2006) in Mathematics, Master's degree (2009) and Ph.D. (2012) in Applied Mathematics from Institute of Mathematics, Statistics and Computing Science (IMECC) of University of Campinas (UNICAMP).
Research interests: nonlinear programming, multiobjective optimization, numerical optimization, numerical linear algebra for optimization.


Campus II, 74690-900, Goiânia, GO - Brazil 
Phone: +55 62 3521-1208
e-mails: lfprudente@ufg.brlfprudente@gmail.com


Refereed publications (Scholar Google Citation)
  1. M. L. N. Gonçalves, F. S. Lima, and L. F. Prudente, Globally convergent Newton-type methods for multiobjective optimization, submitted. [Codes]
  2. P. B. Assunção, O. P. Ferreira, and L. F. Prudente, Conditional gradient method for multiobjective optimization, submitted. [Codes]
  3. A. A. Aguiar, O. P. Ferreira, and L. F. Prudente, Subgradient method with feasible inexact projections for constrained convex optimization problems, submitted. [Codes]
  4. R. Díaz Millán, O. P. Ferreira, and L. F. Prudente, Alternating conditional gradient method for convex feasibility problems, submitted. [Codes]
  5. M. L. N. Gonçalves and L. F. Prudente, On the extension of the Hager-Zhang conjugate gradient method for vector optimization, Computational Optimization and Applications 76(3), pp. 889-916, 2020. [PDFCodes]
  6. O. P. Ferreira, M. S. Louzeiro, and L. F. Prudente, Iteration-complexity and asymptotic analysis of steepest descent method for multiobjective optimization on Riemannian manifolds, Journal of Optimization Theory and Applications 184, pp. 507-533, 2020. [PDFCodes]
  7. L. R. Lucambio Pérez and L. F. Prudente, A Wolfe line search algorithm for vector optimization, ACM Transactions on Mathematical Software 45(4), pp. 37:1-37:23, 2019. [PDFCodes]
  8. O. P. Ferreira, M. S. Louzeiro, and L. F. Prudente, Gradient Method for Optimization on Riemannian Manifolds with Lower Bounded Curvature, SIAM Journal on Optimization 29(4), pp. 2517-2541, 2019. [PDFCodes]
  9. O. P. Ferreira, M. S. Louzeiro, and L. F. Prudente, Iteration-Complexity of the Subgradient Method on Riemannian Manifolds with Lower Bounded Curvature, Optimization 68(4), pp. 713-729, 2019. [PDF]
  10. L. R. Lucambio Pérez and L. F. Prudente, Nonlinear Conjugate Gradient Methods for Vector Optimization, SIAM Journal on Optimization 28(3), pp. 2690-2720, 2018. [PDF Codes
  11. J. Y. Bello Cruz, O. P. Ferreira, S. Z. Németh, and L. F. Prudente, A semi-smooth Newton method for projection equations and linear complementarity problems with respect to the second order cone, Linear Algebra and its Applications 513, pp. 160-181, 2017. [PDF - Codes]
  12. J. Y. Bello Cruz, O. P. Ferreira, and L. F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equation, Computational Optimization and Applications 65(1), pp. 93-108, 2016. [PDF - Codes]
  13. M. L. N. Gonçalves, J. G. Melo, and L. F. Prudente, Augmented Lagrangian methods for nonlinear programming with possible infeasibility, Journal of Global Optimization 63(2), pp. 297-318, 2015. [PDF]
  14. E. G. Birgin, J. M. Martínez, and L. F. Prudente, Optimality properties of an augmented Lagrangian method on infeasible problems, Computational Optimization and Applications 60(3), pp. 609-631, 2015. [PDF]
  15. E. G. Birgin, J. M. Martínez, and L. F. Prudente, Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming, Journal of Global Optimization 58(2), pp. 207-242, 2014. [PDF]
  16. J. M. Martínez and L. F. Prudente, Handling infeasibility in a large-scale nonlinear optimization algorithm, Numerical Algorithms 60(2), pp. 263-277, 2012. [PDF]

 Other publications

  1. Ph. D. Thesis (in portuguese): L. F. Prudente, Inviabilidade em métodos de Lagrangiano aumentado, 2012. (Advisor: José Mario Martínez)
  2. Master Thesis (in portuguese): L. F. Prudente, Estimação da superfície de volatilidade dos ativos através da equação de Black-Scholes generalizada, 2009.  (Advisor: José Mario Martínez)